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ABSTRACT
As network speeds have increased to over 100Gbps, operators and
researchers have lost the ability to easily ask complex questions of
reassembled and parsed network traffic. In this paper, we introduce
Retina, a software framework that lets users analyze over 100Gbps
of real-world traffic on a single server with no specialized hardware.
Retina supports running arbitrary user-defined analysis functions
on a wide variety of extensible data representations ranging from
raw packets to parsed application-layer handshakes. We introduce
a novel filtering mechanism and subscription interface to safely
and efficiently process high-speed traffic. Under the hood, Retina
implements an efficient data pipeline that strategically discards
unneeded traffic and defers expensive processing operations to pre-
serve computation for complex analyses. We present the framework
architecture, evaluate its performance on production traffic, and
explore several applications. Our experiments show that Retina
is capable of running sophisticated analyses at over 100Gbps on
a single commodity server and can support 5–100× higher traffic
rates than existing solutions, dramatically reducing the effort to
complete investigations on real-world networks.
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1 INTRODUCTION
Network operators and researchers routinely need to investigate
production network traffic. However, over the past few years, net-
work speeds have grown to 100+Gbps, outpacing the performance
of traditional analysis tools. As a result, seemingly simple, yet
increasingly important questions that require analyzing reassem-
bled flows or parsed application-layer data have become extremely
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difficult to answer (e.g., “What is the packet loss of traffic from
YouTube?” or “How much traffic is sent unencrypted and why?”).

Many solutions have been proposed for analyzing high-speed
network traffic, but few have seen real-world adoption. This is in
part because a trade-off remains between highly-optimized packet
processing frameworks and the expressiveness and ease-of-use
needed to quickly answer operational questions. Fast packet proces-
sors often lack the flow-level [8, 37, 45, 47, 64, 96] and application-
level semantics [55, 67, 87] needed for common analysis tasks. Other
systems, like high-performance intrusion detection systems and
flow monitors, require niche hardware setups [43, 100], and/or are
limited to fixed analysis functions [80, 94, 99, 100].

As a result, operators and researchers continue to attempt to
scale older systems like Zeek (formerly Bro) [68] and Snort [73]—
tools that expose expressive interfaces and high-level network ab-
stractions [19, 22, 29, 30, 33, 40, 50–52, 82–84, 101]—or build cus-
tom analysis solutions using low-level libraries like DPDK and
PF_RING [16, 38, 39, 80, 85, 94]. Unfortunately, older platforms
scale inefficiently to today’s high-speed environments, and custom-
built solutions are time consuming and error prone to develop. For
example, prior work estimates that Zeek requires over 100 CPU
cores to process 100Gbps traffic, assuming perfect scaling [76].

In this paper, we present Retina, a software framework that
supports 100+Gbps traffic analysis on a single server with no spe-
cialized hardware. Retina is designed to enable safely and easily
answering complex questions about entire networks or uplinks
rather than continually performing deep inspection of all network
traffic. Retina dramatically reduces the effort required to understand
high-speed networks by allowing users to subscribe to packets, re-
assembled connections, or parsed application-layer sessions using a
simple filter and callback interface. For example, Retina can log the
server names and ciphersuites of all TLS handshakes with “.com”
domains on over 160 Gbps of network traffic using 8 cores, a stan-
dard server NIC, and 10 lines of Rust code. Retina’s design and
performance is based on several insights:
(1) In contrast to fast packet processing platforms and intrusion

detection systems, analysis questions typically focus on only a
subset of packets and flows (e.g., [17, 22, 29, 30, 101]). By opti-
mizing the analysis pipeline to discard out-of-scope traffic as
early and as often as possible, we can dramatically reduce the
computation spent reassembling, parsing, and processing net-
work traffic, bringing 100+Gbps visibility within range. Retina
decomposes user-friendly filters into each processing step and
uses static code generation to compile filters into performant
native assembly.

(2) Many burdensome development tasks like load balancing, con-
nection tracking, stream reassembly, and application-layer pars-
ing can be automated. However, while techniques for optimiz-
ing these individual components are well-studied, naïvely glu-
ing them together results in redundant processing and data
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transfer inefficiencies. For example, there is no reason to con-
tinue to buffer, copy, and reassemble TCP flows that contain
encrypted data if users are only analyzing cryptographic hand-
shakes. Retina’s processing pipeline is built on the principle
of lazy data reconstruction, where expensive operations are
deferred until the framework is confident that the operation is
needed to achieve the desired analysis result.

(3) Prior works have developed domain-specific languages and
custom APIs for network analysis [13, 45, 55, 63, 67, 68]. While
beneficial for security and performance, these interfaces in-
herently limit the analysis that can be performed. Inspired by
Tock [58] and NetBricks [66], Retina introduces a Rust-based
subscription programming model that allows users to write
arbitrary analysis code on a diverse set of data representations
at multiple layers of the networking stack. By leveraging Rust’s
compile-time guarantees, Retina can safely run complex analy-
ses with minimal run-time overhead.

We deploy Retina in a production network using a single commod-
ity server and 100GbE NIC, and we demonstrate the simplicity
with which users can answer diverse, meaningful questions about
real-world traffic at 100Gbps with zero packet loss. We are releas-
ing Retina under the Apache 2.0 license to enable operators and
researchers to more easily ask questions of high-speed networks at
https://github.com/stanford-esrg/retina.

2 DESIGN GOALS
We aim to build an analysis solution that network operators and
researchers can deploy and use in practice. To ensure we meet
real-world demands, we start by analyzing prior research studies
that employ passive traffic analysis (e.g., [17, 22, 29, 30, 51, 83, 95,
101]), consider our own research questions, and collect deployment
requirements from operators, whichwe use to develop the following
goals and design constraints:
Enable ComplexAnalysis. Our platformmust support arbitrar-
ily complex processing of individual packets, reassembled flows,
and parsed application-layer sessions. Domain-specific query in-
terfaces [13, 45, 63, 66] and specialized monitoring tools [23, 94,
99, 100] are performant but do not accommodate many real-world
needs in practice. For instance, fixed function network analyzers
fall short when applied to unanticipated research questions, such
as uncovering nuanced anomalies in cryptographic operations or
understanding previously unknown vulnerabilities [30]. In other
domains, users should be able to run custom machine learning
models on raw traffic [49], or extract user-defined features to infer
application performance [16]. Our framework should also enable
easily focusing on specific subsets of traffic (e.g., connections to
YouTube and Netflix [17], or all SMTP sessions).
100+Gbps Performance. Many networks that operators and re-
searchers seek to analyze operate at 100+Gbps [15]. Countless em-
pirical studies have relied on historical traces from sub-10GbE traf-
fic collectors like the CAIDA equinix-chicago and equinix-sanjose
vantage points [10, 48, 54, 71, 95]. However, for sustained 100+Gbps
traffic, it is difficult and often infeasible to store all packets to disk
for after-the-fact analysis [18], especially for longitudinal studies
that require weeks to months of data. In addition, IXPs and other
deployment locations are frequently space and power constrained.

1 #[filter("tls.sni matches '.*\\.com$'")]
2 fn main() -> Result<()> {
3 let cfg = load_config();
4 let callback = |hs: TlsHandshake| {
5 log::info!("TLS handshake with {} using {}",
6 hs.sni(), hs.cipher());
7 };
8 let mut runtime = Runtime::new(cfg, filter, callback)?;
9 Ok(runtime.run());
10 }

Figure 1: Example Traffic Subscription—Retina users subscribe to traffic
using a filter and Rust callback. Here, we show a subscription for parsed
TLS handshakes to all domains ending in “.com”.

Several ISPs that our team is working with have been able to pro-
vide only 1–2 rack units for analysis equipment. Our system must
support analyzing 100+Gbps links in real-time using a single 1RU
server and no external appliances.
Readily Deployable. Despite scalability issues [76, 100], tradi-
tional monitoring platforms like Zeek and Snort are popular due
to their expressiveness, relative ease-of-use, and simple deploy-
ment requirements. While prior works have improved packet pro-
cessing performance by offloading CPU intensive tasks to special-
ized hardware like SmartNICs [35, 62, 79], FPGAs [35, 74, 100] and
GPUs [43, 87], these devices require elaborate development cycles
that preclude many operators and researchers [5]. Our framework
must be readily deployable on commonly available hardware (e.g.,
“dumb” NICs), run in a standard software environment, and remain
easy to use without the need to learn specialized skills or program-
ming paradigms.
Security. Real-world network traffic can be unpredictable and
malicious [26, 68]. Vulnerabilities in processing code can be re-
motely exploited to expose sensitive network communications. Un-
fortunately, due to performance considerations, most monitoring
tools are written in low-level languages like C and C++, which
have allowed memory safety errors escalate into vulnerabilities
on production networks [24, 25, 27]. Our system needs to safely
perform internal framework operations (e.g., packet parsing and
stream reassembly) and enforce memory safety within user-defined
analysis functions such that individual experiments do not place
users at unnecessary risk.

While there has been much progress in each individual area, we
find that existing systems fulfill only a subset of our requirements.
Motivated by these observations and constraints, we set out to
develop a new system capable ofmeeting all of the above objectives.

3 RETINA ANALYSIS FRAMEWORK
We introduce Retina, a software framework that enables operators
and researchers to ask complex questions of high-speed traffic by
subscribing to filtered, reassembled, and parsed network data. For
example, Retina lets users subscribe to all TLS handshakes with
domains ending in “.com” and log the server names and cipher-
suites in under 10 lines of Rust code (Figure 1). In this scenario, the
framework automatically handles packet capture, load balancing,
connection tracking, TCP reassembly, TLS handshake parsing, and
flow filtering. Retina depends on only commonly available hard-
ware primitives and is implemented in Rust, which enables the
framework to isolate and secure user-defined analysis functions.
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3.1 System Overview
We observe that most analysis questions require fully processing
only a subset of Internet traffic. By deferring computationally expen-
sive operations and discarding extraneous traffic at each processing
step, we can dramatically reduce unnecessary computation such
that it is possible to answer questions on high-speed links without
restricting our analysis language or requiring specialized hardware.

Retina users subscribe to network traffic by specifying a filter
and a callback, which Retina compiles into a work-conserving pro-
cessing pipeline that (1) eagerly discards out-of-scope traffic, and
(2) lazily reconstructs relevant network data (deferring expensive
operations until the framework determines they are necessary).
As shown in Figure 2, Retina decomposes subscription filters into
multiple layers, each of which hierarchically reduces the traffic
sent to subsequent processing stages. As packets arrive, Retina re-
constructs larger and more relevant segments of data up through
each layer while explicitly deferring data transfers, reassembly, and
application-layer parsing. This approach efficiently retains desired
traffic, while minimizing the work spent processing data that will
eventually be filtered out. Retina abstracts away the filter decom-
position and data reconstruction steps, allowing users to focus on
core analysis logic without worrying about hardware specifics or
low-level optimizations. We detail filter decomposition (Figure 2,
left) in Section 4 and data processing (Figure 2, right) in Section 5.

3.2 Subscription Programming Model
Users interact with Retina by specifying a traffic filter and a Rust
callback function that receives network data in one of several ex-
tensible representations. Filters and data types registered with the
callback are independent, enabling users to subscribe to desired
traffic while choosing the data representation most suitable for
their analysis (e.g., raw IP packets associated with TLS handshakes
with “netflix.com”).

3.2.1 Accessible Filters. Filters let users easily focus on traffic of
interest, while simultaneously allowing Retina to quickly discard
out-of-scope traffic to save computation. Our filter language is de-
signed to be expressive, semantically simple, and familiar to users.
While not identical, the syntax is inspired by Wireshark Display
Filters [90] and the Camus subscription language [56]. Filters are
defined as a logical expression of constraints on attributes of the
input data. Each constraint is either a binary predicate that com-
pares the value of an entity’s attribute with a constant, or a unary
predicate that matches against the entity itself. We show the filter
syntax in Table 1, along with several examples.

3.2.2 Expressive Callbacks. Rather than introducing a domain-
specific analysis language that potentially restricts functionality,
Retina presents an expressive callback interface in Rust that al-
lows users to safely write arbitrary analysis code in a standard
software development environment. Callbacks are registered with
a subscribable type that provides access to network data at one of
three abstraction levels corresponding to layers of the OSI model:

– Raw Packets (L2–3): Raw Ethernet frames or IP packets are
provided in the order received on the network.
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Figure 2: Framework Architecture—Retina efficiently processes traffic
on high-speed networks by decomposing filters into multiple layers that hi-
erarchically reduce traffic sent to subsequent processing stages. At runtime,
data is reconstructed lazily to minimize computation on traffic that will be
filtered out.

Protocols h generic
Fields f generic
RHS values r int|string|ipv4|ipv6|int_range
Predicates p h|h.f = r|h.f < r|h.f in r|h.f matches r|...
Expressions e p|e1 and e2|e1 or e2|(e)|...

Examples ipv4.ttl > 64
ipv4 and (tls or ssh)
ipv6.addr in 3::b/125 and tcp
http.user_agent matches 'Firefox'

Table 1: Filter Syntax—Retina employs a Wireshark-inspired filter syntax
that helps users control the type of traffic processed. In contrast to prior
systems, identifiers are are not hard-coded into the framework, but rather
are exposed by extensible protocol modules.
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– Reassembled Connections (L4): Data from connections are
reassembled in sequence and delivered as fully reconstructed
byte-streams or connection records.

– Application-Layer Sessions (L5–7): Reassembled streams
are further parsed into protocol messages and presented to the
user as parsed application-layer data.

Our data model contrasts those used by many middlebox develop-
ment frameworks and intrusion detection systems, which expose
event-based interfaces that allow users to manipulate flows or re-
spond to pre-defined network behaviors (e.g., TCP state transition,
triple duplicate ACK, etc.) [36, 55, 73]. We observe that this model
complicates many research and analysis tasks by requiring the user
to reason about complex network interactions and protocol-specific
dynamics that are better abstracted away by the framework. Retina
shifts the responsibility of managing protocol events and other
complexities from the user to the framework itself.

For example, we provide the L7 session abstraction needed to
make analyzing TLS handshakes as simple as writing a function
that takes a parsed TLS handshake as an argument (Figure 1). Fine-
grained L3 analyses (e.g., network classification with packet bi-
naries [49]) can also be performed by subscribing to raw packets
while filtering for connections to specific domains. We note that
even if Retina does not directly implement a particular data ab-
straction, subscribing to raw packets is equivalent to using a high-
speed packet analyzer with more advanced filtering capabilities
than tcpdump. Users can still choose to run arbitrary analyses using
raw packets, or alternatively, extend the framework with new a
protocol or subscription module.

3.3 Framework Extensibility
Retina’s filter language and subscription data model are extensible.
Unlike existing filtering techniques [61, 90] that have a fixed set of
allowable primitives hard-wired into the framework, Retina maps
filter predicates to identifiers exposed by a set of extensible proto-
col modules. Each module defines how to parse and reconstruct
incoming traffic and exposes a set of protocol-specific fields that
the framework can use for filtering. Users can also create new sub-
scribable types (e.g., SSH handshake transcript, fully reconstructed
byte-stream, etc.) by implementing a new subscription module or
by modifying an existing one. We detail how modules are defined
in Appendix A.

4 FILTER DECOMPOSITION
Retina’s traffic filters are not merely a convenience—they dramati-
cally increase performance by efficiently discarding unneeded traf-
fic and connection state as early and as often as possible. Retina
applies filters by decomposing a user-specified filter expression
into four components: (1) a NIC-compatible hardware packet fil-
ter, (2) a more expressive software packet filter, (3) a connection
filter, and (4) an application-layer session filter. Each filter hierar-
chically matches on incoming packets, connections, and sessions,
allowing Retina to drop out-of-scope traffic at every processing
step. Hardware filters are limited in complexity, but winnow down
traffic at zero CPU cost, while the software filters work in tandem
to reduce computation in subsequent stages of the data pipeline.
At compile time, Retina transforms each software sub-filter into a

fixed sequence of conditionals that is statically verified by the Rust
compiler for memory safety and correctness before being inlined at
its respective processing layer. This technique bakes the filter logic
into the application binary as if it were hard-coded by a developer,
avoiding the overhead of interpreting filters at runtime.

4.1 Generating Multi-Layer Filters
We represent filter expressions as a predicate trie, of which input
data must match at least one root-to-leaf path to satisfy the filter.
This intermediate representation is similar to the control flow graph
model used in BPF [61] and NNStat [14], but is modified to facilitate
multi-layer filter decomposition and static code generation. For
instance, all nodes are restricted to a single parent to eliminate
ambiguity at compile time when generating the sub-filters. This
structure also maps each node directly to a conditional statement in
Rust (rather than compiling to a limited instruction set [61]), which
increases flexibility to support new protocols and filterable fields.

To build the predicate trie, Retina first transforms the filter ex-
pression into disjunctive normal form, creating a set of patterns that
each consist of a conjunction of atomic predicates. Using metadata
from protocol modules that dictate how headers are encapsulated,
Retina expands and reorders each pattern such that packet headers
and application-layer protocols are parsed in sequence (due to the
potential for variable length headers). During trie construction,
we tag predicate nodes to indicate whether they apply to packet,
connection, or session predicates, and whether they terminate a
sub-filter (i.e., is a leaf node in the sub-tree). Once the predicate
trie has been constructed, we group nodes into their respective sub-
filters and perform an optimization pass to eliminate redundant
branches to speed up matching. We show an example in Figure 3.

Hardware Packet Filter. Retina automatically installs an on-
NIC hardware filter to decrease load on the CPU. For narrow filters,
this can dramatically reduce the volume of traffic reaching software
with no external equipment. Most commodity NICs are capable of
some degree of flow filtering, but vary in terms of supported proto-
cols, operands, and complexity. As a result, manually programming
hardware rules requires significant effort from the user to under-
stand limitations of different NICs and vendor specific quirks [57].
Our framework abstracts this process away by expanding each filter
predicate into a hardware flow rule and dynamically validating its
compatibility with the user’s device. Retina caches each validated
predicate and recombines them into a set of hardware rules that are
at least as broad as the subscription filter. We show the hardware
filter in Figure 3 for a NIC that does not support the >= operand
in the predicate tcp.port >= 100. The resulting hardware packet
filter permits all TCP packets, but relies on the software packet
filter to implement the remaining filter logic.
Software Packet Filter. To generate the software packet filter,
we leverage procedural macros, a metaprogramming feature of Rust
that allows us to modify the syntax tree of the application source
code at compile time. As shown in Figure 3, each unary predicate
is converted to an if let statement1 to parse packet headers, and
each binary predicate maps to an if statement to match on fields.
1In Rust, if let matches an expression to a pattern and gives access to the matched
value inside the body of the conditional, whereas a normal if statement simply runs
when the condition is true.
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HW Packet Filter

Conn. FIlter

(2) Software Packet Filter

fn packet_filter(mbuf: &Mbuf) -> FilterResult {
  if let Ok(eth) = &Packet::parse_to::<Ethernet>(mbuf) {
    if let Ok(ipv4) = &Packet::parse_to::<Ipv4>(eth) {
      if let Ok(tcp) = &Packet::parse_to::<Tcp>(ipv4) {
        if tcp.src_port() >= 100 || tcp.dst_port() >= 100 {
          return FilterResult::MatchNonTerminal(4);
        }
        return FilterResult::MatchNonTerminal(2);
      }
    } else if let Ok(ipv6) = &Packet::parse_to::<Ipv6>(eth) {
      if let Ok(tcp) = &Packet::parse_to::<Tcp>(ipv6) {
        return FilterResult::MatchNonTerminal(8);
      }
    }
  }
  return FilterResult::NoMatch;
}

(1) Hardware Packet Filter



ETH-IPV4-TCP -> RSS

ETH-IPV6-TCP -> RSS
ELSE -> DROP

(4) Application-Layer Session Filter
fn session_filter(session: &Session, 
  conn_term_node: usize
) -> bool {
  match conn_term_node {
    5 => {
      if let SessionData::Tls(tls) = 
          &session.data {
        if RE0.is_match(&tls.sni()[..]) {
          return true;
        }
      }
    }
    3 => return true,
    9 => return true,
    _ => return false,
  }
  return false;
}

lazy_static! {
  static ref RE0 = Regex::new("netflix")
    .unwrap();
}
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(3) Connection Filter
fn conn_filter(conn:&ConnData) -> FilterResult {
  match conn.pkt_term_node {
    4 => {
      if matches!(conn.service(), ConnParser::Tls {..}) 
      {
        return FilterResult::MatchNonTerminal(5);
      }
    }
    2 => {
      if matches!(conn.service(), ConnParser::Http {..}) 
      {
        return FilterResult::MatchTerminal(3);
      }
    }
    8 => {
      if matches!(conn.service(), ConnParser::Http {..}) 
      {
        return FilterResult::MatchTerminal(9);
      }
    }
    _ => return FilterResult::NoMatch,
  }
  return FilterResult::NoMatch;
}

SW Packet Filter

Session Filter

Figure 3: Filter Decomposition and Code Generation—We show how the filter (ipv4 and tcp.port >= 100 and tls.sni ~ 'netflix') or http is
decomposed and executed. Retina parses the specified filter expression into a predicate trie representation, and generates (1) a set of NIC-compatible flow rules,
(2) a more expressive packet filter, (3) a connection filter, and (4) an application-layer session filter. Flow rules are installed on the NIC, while the software
filter functions are compiled and inlined at their respective processing layers. Native code generation can result in up to 3× higher throughputs over runtime
interpretation, depending on the filter and traffic (Appendix B). Note: we truncate full path names and other expansions for readability.

Retina uses the relevant protocol modules (Section 3.3) to generate
the actual parsing code and calls the appropriate accessor methods
defined in each module to evaluate the predicate. If a packet filter
pattern is non-terminating (i.e., there are subsequent connection or
session-level predicates that must be applied downstream), we tag
any matching packets with the ID of the last matched node in the
trie to prevent redundant trie traversal in ensuing filters. The gen-
erated filter function is verified by the Rust compiler to be memory
safe and syntactically correct, then inlined in the processing code
immediately after packet capture.
Connection Filter. The connection filter evaluates predicates on
connections (e.g., L7 protocol), and serves to eliminate excess con-
nection state and stop unnecessary stream reassembly and protocol
parsing. This filter is applied as soon as enough data has been ob-
served to identify the L7 protocol but before full L7 parsing occurs.
Like the packet filter, the connection filter maps predicate nodes
to a sequence of conditionals according to the predicate trie, and
returns a filter result tagged with the deepest matched predicate
node ID. In Figure 3, we show the generated connection filter code
that will discard all non-HTTP and non-TLS connections, as well
as TLS connections not destined for port 100 or greater.
Application-Layer Session Filter. The session filter evaluates
predicates on application-layer elements (e.g., TLS version), work-
ing in conjunction with the connection filter to reduce memory and
CPU cycles by discarding L7 data (or entire connections) that the
user is not interested in. Retina applies this filter when a session
is fully parsed by branching from the deepest predicate node ID
matched in the pattern so far. If the connection had already matched
a terminal predicate (e.g., nodes 3 and 9 in Figure 3), the session
filter simply returns a successful match. For performance, Retina
automatically declares lazily evaluated static variables for executing
regular expressions (e.g., tls.sni ~ 'netflix'). This ensures that
all regular expressions in the filter are compiled only once rather
than every time the filter is applied.

We emphasize that Retina filters are generated at compile time so
that Retina does not need to consider how to apply the filter against

input traffic at run time. This enables Retina to safely and efficiently
discard out-of-scope traffic, dramatically reducing computational
burden at each processing step.

5 DATA RECONSTRUCTION
In this section, we describe the design of Retina’s runtime process-
ing pipeline, depicted on the right-hand side of Figure 2. At a high
level, Retina receives raw packets from the network and builds
increasingly larger segments of data up through each filtering layer
before executing the callback with the user’s subscription data. Be-
cause Retina is “subscription-aware”, it is able to lazily reconstruct
network traffic. That is, we avoid redundant copying, reassembling,
and parsing of data destined for the user until we are sure that
it fulfills the desired subscription. This approach minimizes any
wasted computation on traffic that will be discarded by later filters.

5.1 Stateless Packet Processing
Retina is designed to support modern multi-core architectures and
leverages commodity NIC hardware for initial packet filtering and
load balancing at zero CPU cost. Ingress packets are processed
by the hardware filter before being distributed among cores via
symmetric Receive Side Scaling (RSS) [93]. RSS is a well-known
technique that load balances traffic with per-connection consis-
tency, avoiding cross-core data sharing and enabling near-linear
scaling by increasing core counts. RSS is implemented by most
commodity NICs [7] and works by hashing packet headers and
dispatching them to receive queues based on a redirection table
lookup. While symmetric RSS does not necessarily achieve perfect
load balancing, we find that on real-world traffic, the number of
flows tends to be well distributed among cores. More advanced
load balancing techniques (e.g., [7, 65]) can yield further scaling
improvements but are orthogonal to our work.

Since modern operating system kernels are unable to sustain
100Gbps ingress traffic rates [8], we use kernel-bypass (specifically,
DPDK [37]) to deliver raw packets from the NIC directly to user-
space memory. Retina assigns one CPU core per receive queue, and
each core polls its associated descriptor ring for packets. Packets
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are immediately filtered again in software to efficiently discard
those that are unable to be filtered in hardware (e.g., due to un-
supported header fields or operands). If the user is subscribed to
packets with no need for connection or session filtering, the call-
back is directly invoked at this stage to bypass further processing.
Otherwise, packets are forwarded to the Connection Tracker, which
continues processing them into larger and more relevant segments
for further analysis.

5.2 Stateful Connection Processing
Retina determines if stateful processing is needed based on the sub-
scription data type and the result of the packet filter. Connection and
application-level traffic subscriptions, as well as non-terminating
packet filter matches (i.e., the packet only partially matched a filter
pattern), require stateful processing to reassemble connections or
parse application-layer data. This is critical for a broad range of anal-
ysis tasks, ranging from identifying patterns across packet bound-
aries to investigating anomalies in cryptographic handshakes.

Connection Tracking. Retina uses per-core hash tables to man-
age connection state, an approach that has been shown to scale
independently of the offered traffic load [41]. Each core tracks only
connections received from symmetric RSS, allowing tables to be
maintained independently and without cross-core synchronization.

Connections often fail to terminate gracefully on real-world net-
works [27], in part due to large-scale SYN scanning (e.g., ZMap
scans [31]). Around 65% of TCP connections observed on our net-
work consist of a single unanswered SYN, causing new connections
to arrive at a far higher rate than that of connection establishment
or termination. To prevent memory exhaustion from inactive con-
nections, we build upon a timer wheel [86] mechanism adapted to
accommodate modern network behaviors. Recent work as shown
that timer wheel based flow deletion scales better than alternative
techniques without adding complexity to hash table insertions [41].

Retina employs hierarchical timer wheels based on empirical
observations: a short connection establishment timeout to expire
unanswered SYNs, and a longer inactivity timeout to remove estab-
lished inactive connections. Unanswered SYNs are treated as proper
connections and can be analyzed in the same manner as other con-
nections. Naturally, there is a trade-off between timeout length and
analysis depth, as the framework may prematurely remove connec-
tions that have long intervals between packets. Our default values
of 5 seconds and 5 minutes, respectively, are chosen conservatively
based on the 99th percentile inactivity intervals measured on our
network (1 second from SYN to SYN-ACK, 163 seconds between
consecutive packets), though all timeouts are configurable to accom-
modate different network environments and subscription types.

Light-Weight Stream Reassembly. Traditional approaches to
TCP reassembly involve allocating data buffers to hold packet pay-
loads as they arrive from the network [46, 67, 92]. While this design
provides a convenient stream abstraction for applications that re-
quire access to in-order bytes, it is wasteful in situations where fully
reconstructed byte-streams are not needed for every connection,
or only partially needed for some connections. For example, if a
user subscribes to TLS byte-streams with domains ending in “.com”,
it is wasteful to allocate stream buffers and copy bytes over until

the session filter can verify that the server name indeed ends in
“.com”. Furthermore, prior work has shown that the vast majority of
TCP packets arrive in sequence order [26, 100], demonstrating that
large reassembled data buffers are unnecessary to support most
real-world networks. Indeed, our measurements of a large univer-
sity network show that 94% of flows with at least two packets arrive
completely in order, while the median number of packet arrivals it
takes to fill a “hole” in a TCP byte-stream is 1.

Since Retina’s behavior is derived from the subscription, we can
tightly interlace the processing logic to conserve work for traffic
that actually pertains to the user. Rather than reconstructing byte-
streams by copying payloads into a separate receive buffer, Retina
only reorders packets as they arrive. We track the next expected
sequence number in each flow, and immediately send packets that
match the expected sequence downstream for further processing.
Out-of-order packets are stored by reference in a configurable-
length ring-buffer, which is flushedwhen the next expected segment
arrives. By default, we use 500 packets as the maximum out-of-order
capacity, which can be adjusted based on available memory and
expected packet loss on the network. This fast, common-case ap-
proach to stream-reassembly avoids unnecessary computation and
memory on streams that do not fulfill the user’s subscription, allow-
ing most packets to simply “pass through” the stream reassembler.

Application-layer Parsing. Retina parses connections accord-
ing to a subscription-specific statemachine derived from both the fil-
ter and the subscribed data type, an approach that prevents wasteful
computation from parsing or reassembling data no longer needed
for the subscription. For example, if a user is interested in analyz-
ing raw packets associated with HTTP connections, we can stop
reordering flows after identifying the protocol as it is sufficient to
simply track the connection and deliver each packet. If a user is
subscribed to TLS handshakes, we can even stop processing traf-
fic mid-connection as there is no reason to continue tracking the
encrypted TCP connection after the initial handshake.

All connections transition through four possible states (Figure 4),
which indicate whether Retina should Probe the connection for
protocol messages, Parse the application-layer protocol, Track
the connection without parsing, or Delete the entire connection
from the state table. The connection filter and session filter are
choice pseudostates that split transitions according to the output of
the filter, and determine when connections can stop being parsed,
reassembled, or tracked altogether. Retina automatically derives the
state transitions according to parsing behavior defined in protocol
modules, as well as output behavior defined in subscriptionmodules.
This design avoids wasting memory and CPU cycles on connections
that no longer fulfill the subscription, enabling Retina to better serve
connections that do require additional processing.

To illustrate this, we show the state diagrams for two example
subscriptions in Figure 4: one for raw packets in HTTP connec-
tions, and the other for transcripts of TLS handshakes with “.com”
domains. In the first example (Figure 4a), Retina buffers incoming
packets while probing for HTTP messages. Connections that match
the HTTP connection filter are checked against the session filter
(which in this case defaults to True since the connection filter is
terminal, recall from Section 4.1). On a filter match, Retina runs the
callback on any buffered packets and transitions the connection to
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Figure 4: Subscription-Specific Connection State Diagrams—Retina automatically derives state transitions to efficiently parse connections according to
the filter and subscription type. Each state dictates the parsing behavior for the connection, and dashed lines indicate opportunities to discard connections
before they naturally terminate.

Track, allowing it to bypass parsing on remaining packets in the
connection. By comparison, in Figure 4b, Retina probes for TLS pro-
tocol messages and internally manages TLS state. Connections that
fail to match the TLS connection filter (which can happen as early
as the Client Hello) are immediately dropped, and likewise for those
that do not match the session filter tls.sni ~ '.*\\.com$'. On a
full filter match, Retina runs the callback on the parsed handshake
transcript and removes the connection before it naturally termi-
nates. We emphasize that these state transitions are automatically
derived by the framework to halt redundant parsing and remove
connection state where possible, allowing Retina to accommodate
large amounts of traffic while remaining flexible over different
subscription types.

5.3 Callback Execution
Callbacks are closures that define the user-level processing logic
to be performed against subscribed network data. Retina transfers
ownership2 of the data from the core framework to the callback,
providing the user with flexibility to write arbitrary analysis func-
tions in a general purpose programming language. By building
on Rust, Retina provides memory safety guarantees that prevent
user-defined code from leaking memory or crashing the framework.
Additionally, it allows users to easily take advantage of Rust’s ex-
tensive ecosystem of third-party libraries [21], all within a unified
processing environment. This significantly reduces development
overhead and allows Retina to run user code alongside the data
collection infrastructure without context switching or placing seri-
alized data in an external queue.

Callbacks are implemented inline rather than in a separate thread,
which enables efficient execution without cross-core communi-
cation. As with any real-time system, however, callbacks cannot
perform arbitrarily long computation. To some extent, expensive op-
erations can be absorbed by packet receive queues without stalling
the processing pipeline. Retina does provide logs and real-time
monitoring of packet loss, throughput, and memory usage that
can be used as feedback to adjust the filter or improve callback
efficiency if needed. For instance, if an application is writing data
to disk on each callback but is not able to keep up with the ingress
traffic rate (i.e., incurs sustained non-zero packet loss), the user may
consider using a buffered writer, increasing the number of cores, or
even narrowing the filter. We evaluate Retina’s performance with
callbacks of varying complexity in Section 6.1, but leave support
for alternative execution models to future work.
2Ownership is a unique feature of Rust that enables the compiler to ensure memory
safety at compile time.

6 PERFORMANCE EVALUATION
In this section, we evaluate Retina’s performance, and demonstrate
its ability to process over 100 Gbps of real-world traffic for a variety
of analysis applications on a single commodity server. We show that
Retina outperforms popular networkmonitoring tools by sustaining
5–100 times higher traffic rates with zero packet loss, and can
be used for long-term analysis of high volume networks without
exhausting memory.

Hardware Setup. We perform our evaluations on a dual Xeon
Gold 6248R 3GHz CPU (24 cores), with 384GB of memory and two
100GbE Mellanox ConnectX-5 NICs. The ConnectX-5 is a standard
100GbE “dumb” NIC frequently used in prior work [7, 34, 56, 57, 72],
but we note that Retina supports other DPDK-compatible NICs as
well (e.g., Intel E810). Both NICs receive a 100GbE link carrying real-
time traffic from a large university network, with packets duplicated
across the two links such that we receive double the regular traffic.
We use this setup to stress test Retina beyond 100Gbps, as the live
rate on a single link rarely exceeds 75Gbps at peak times during
the day. Despite using a dual-socket server, we restrict ourselves to
using cores from only one CPU. We keep hyper-threading enabled
but only use one thread per physical core.

Monitoring Environment. Retina targets high-volume, real-
world networks. As such, we run our evaluations on live traffic
from a large university campus network, unless otherwise stated.
Due to storage limitations, it is infeasible to capture a large enough
packet trace to properly evaluate Retina against realistic work-
loads for more than a few seconds at 100Gbps. Open-source traffic
generators like DPDK Pktgen [89] and TRex [78] are unable to
synthetically generate a realistic distribution of flows with proper
payloads at line rate either. While using real traffic exactly matches
our intended use-case, it is inherently inconsistent and difficult to
control for experiments. We combat this by running experiments
temporally close to each other and running multiple trials where
possible. We summarize several features of our network traffic in
Appendix C.

Ethical Considerations. As part of our evaluation, wemeasured
whether Retina was capable of processing high-speed traffic on our
campus network. This analysis was approved by our university’s
privacy and security office. We did not investigate human behavior,
surface or investigate any individual flows or IP addresses, or store
any traffic or individual records to disk. We restricted all analysis
to aggregate network statistics directly output by Retina. The tap
setup only saw a copy of traffic to prevent impact on network users
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(b) TCP Connection Records
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(c) TLS Handshakes

Figure 5: Zero Packet Loss Processing Throughput—We use CPU cycles per callback as a proxy for callback complexity. For all three subscription types,
Retina is able to support more than 160Gbps ingress rates on a single multi-core CPU. We also report the approximate packets-per-second using the average
packet size on our network (895 B). We emphasize that variations above 100Gbps are due to the ingress traffic rate at the time of the experiment (which we
are unable to control), and should therefore be interpreted as “at least 100Gbps”.

in the event of a system failure. The server used was deployed
in partnership with our campus networking and security teams
using the same security procedures as other production network
equipment in order to ensure that we did not increase the attack
surface of users on campus.

6.1 End-to-End Throughput
In this section, we evaluate Retina’s end-to-end processing through-
put. Since we accommodate a wide variety of use cases, there is
significant variation that can occur depending on the filter, the
data representation, and the complexity of the callback. We first
evaluate Retina over three subscription types: raw unordered pack-
ets, TCP connection records, and parsed TLS handshakes, each of
which represents one of the three supported data abstraction levels
(Section 3.2.2). To approximate callback complexity, we busy loop
for a set number of CPU cycles within the callback function.
Setup. Since we cannot control the ingress traffic rate on the
observed network, we adjust the rate of traffic that reaches the
processing cores by modifying the NIC’s RSS redirection table
to direct random four-tuples to a separate “sink” core that drops
all received packets. This sink core is not central to the Retina
framework, but allows us to measure the effective ingress rate at
the CPU without sacrificing flow consistency. This technique can
optionally be used to sample traffic for extremely heavy workloads,
but none of our applications have required us to do so (Section 7).
Unfortunately, flow sampling cannot be enabled with hardware
flow rules, so we disable hardware filtering to give a lower bound
on the maximum throughputs measured in this experiment.

For each trial, we start at the full ingress traffic rate and slowly
increase the percentage of flows dropped by the NIC until we ob-
serve zero packet loss for five minutes (enough to reach steady-state
given our default inactivity timeouts). We repeat trials until either
(1) the maximum zero-loss processing throughput is lower than
the total ingress traffic rate, or (2) the throughput saturates the
ingress link at above 100Gbps. The dynamic nature of the input
traffic makes it hard to find a stable comparison point between
configurations that saturate the ingress rate, so we choose 100Gbps
as the target threshold. As such, any variations above this threshold

should be viewed as an artifact of the traffic rate at the time of the
experiment rather than as a function of the number of cores or the
complexity of the callback.
Results. Figure 5 reports the maximum throughputs sustained
with no packet drops. As a baseline, Retina is able to capture all
packets on the network and run an empty callback with just two
cores at over 162Gbps. Unsurprisingly, the maximum throughput
decreases as more time is spent analyzing each packet, with per-
packet workloads that exceed 100K cycles incurring non-zero loss.
Using just 8 cores, Retina is able to reassemble and process all TCP
connection records from at least 127Gbps of input traffic, and with
16 cores for more complex (100K+ cycles) processing. For context,
logging connection records to a shared file takes around 12K cy-
cles on our platform. Naturally, there are far fewer connections
than individual packets, enabling higher maximum traffic rates for
large per-callback workloads. When subscribed to TCP connec-
tion records, Retina proactively drops all non-TCP packets (30% of
all packets on our network, Appendix C) and bypasses redundant
payload processing.

Analyzing all TLS handshakes can be achieved using just 8 cores
with ingress traffic rates exceeding 160Gbps, even for heavy per-
handshake workloads. Although subscriptions for TLS handshakes
require application-layer parsing, Retina’s filtering system automat-
ically discards non-TLS connections as soon as they are detected
and drops remaining packets in TLS streams that arrive after the
handshake. By design, no CPU cycles are wasted reassembling or
parsing packets that will never fulfill the subscription.

6.2 Comparison with Optimized IDSes
We compare Retina’s performance to Zeek [68], Snort [73], and Suri-
cata [36], popular intrusion detection and monitoring platforms
that are frequently employed to ask research and operational ques-
tions on networks. These are open-source tools that many users are
familiar with, and are some of the few existing platforms that can be
adapted to various analysis tasks with relative ease.While not direct
replacements (Retina is not an IDS), they provide similar support
for stream reassembly and application-layer parsing, unlike purely
packet-oriented frameworks like FastClick [8], BESS [46], VPP [6],
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Figure 6: Comparison with Network Monitors—Retina is able to sus-
tain 5–100× higher ingress traffic rates on a single core compared to Suri-
cata+DPDK, Snort+DPDK, and Zeek+AF_PACKET. Dashed lines indicate
packet losses above 1%.

and PacketMill [34] that lack the expressiveness and ease-of-use
required for complex network analysis.
Setup. To enable measurement under controlled, though less re-
alistic, workloads, we use two HTTPS client and server machines
to generate traffic towards the system under test (instead of a pro-
duction network). The client generates 128 parallel closed-loop
256 KB HTTPS requests using wrk2 [42] at different rates towards
an Nginx server interconnected with 100GbEMellanox ConnectX-5
NICs. Each machine uses Linux Traffic Control to mirror the traffic
received towards a 100GbE port linked to the system under test.

Retina is configured to log connections that match the TLS server
name as well as output its own performance logs. In an effort to
provide a fair comparison, we disable all but the SSL protocol ana-
lyzer in Zeek and generate only SSL and diagnostics logs. Suricata is
configured with a single rule to match on the SNI, and we disable all
preprocessors except Stream5, TCP, and SSL on Snort. In addition,
we extended Snort and Suricata to support DPDK in order to prevent
performance bottlenecks that stem from packet I/O. We attempted
to use a recent prototype Zeek DPDK plugin [32], but were unable
to achieve higher performance compared to AF_PACKET. This ob-
servation, combined with recommendations from Zeek maintainers,
led us to evaluate Zeek with AF_PACKET instead. Since Snort is
not multi-threaded and the testbed is limited to 70Gbps without
packet losses, we restrict each system to a single core and disable
hardware offloads so that all systems run fully in software.
Results. Figure 6 shows that Retina performs best for this analy-
sis task, only dropping packets at above 49Gbps using a single core
and no hardware filtering. Suricata follows, with less than half of
Retina’s processing throughput, but drops packets at above 10Gbps.
Zeek only achieves around 5Gbps (4Gbps without packet loss).
This is on par with advertised Zeek performance numbers [20]
and estimates from prior work [76]. Snort achieves 1Gbps at best,
but only 400Mbps of zero-loss throughput. Snort is particularly
slow due to its inability to run the pattern matching algorithm on
select packets only, despite configuring our single rule to match
SSL connections in the Client Hello state. While the ease of writing
simple Rust callbacks for different data abstractions is difficult to
quantify, Retina is able to process 5 to 100 times higher traffic rates
than popular network monitoring systems due to its compile-time,
strict to the point-and-nothing-more pipeline. Zeek, Snort, and
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Figure 7: Effect of Filter Decomposition— Retina hierarchically re-
duces the fraction of ingress packets that trigger each processing stage,
dramatically lowering the average end-to-end per-packet processing
time. We show the break down of average CPU cycles and the frac-
tion of packets consumed by each stage (note the log scale). Filter:
tcp.port = 443 and tls.sni ~ '(.+?\.)?nflxvideo\.net'

Suricata, on the other hand, are primarily designed for full visibility
into all traffic, making them more capable of intrusion detection
and security monitoring but less suitable for answering specific
questions about high-speed network traffic.

6.3 Multi-Layer Filtering
A key aspect of Retina’s performance is its filter decomposition
and ability to quickly discard out-of-scope traffic. To directly show
how this affects processing throughput, we show the effect for an
example application that extracts transport-layer features of video
traffic from 100GbE networks (detailed in Section 7.3). We break
down the time spent in each processing stage, and show how Retina
hierarchically reduces the frequency that each stage needs to run.
Setup. We subscribe to TCP connection records on our campus
network and filter for connections to a subset of Netflix video
servers on port 443. We enable hardware filtering and record the
number of times each major processing stage runs as well as the
average number of CPU cycles spent per stage.
Results. Figure 7 depicts the fraction of packets that trigger each
processing stage, along with the average number of CPU cycles
consumed when each stage is run. We see that 35.4% of packets
satisfy the packet filter and require a lookup or insert into the
connection table. However, only 1.54% of packets ever need to be
reassembled. This is because the connection filter eliminates non-
TLS connections as early as the TLS Client Hello and the session
filter removes non-Netflix connections as soon as TLS handshake
parsing completes. Packets from discarded connections are not
reassembled, while those in remaining connections no longer need
to be parsed. The end result is that the user callback, which executes
relatively expensive analysis code, runs on only 0.000188% of the
incoming packets. By efficiently reducing the frequency that each
processing stage runs, Retina dramatically lowers the average end-
to-end per-packet processing time.

We note that not all subscriptions may be satisfiable across all
traffic. For instance, if we were instead monitoring a private peering
link to Netflix, it would be reasonable to assume that most con-
nections would not be discarded by the filter, thus reducing the
observed performance benefits. If the specified filter still results
in too much traffic given the compute resources available, users
can enable connection-aware sampling (as described in Section 6.1).
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However, we expect that typical high-speed links contain a mix-
ture of traffic types, much of which can be filtered out to improve
performance for the desired analysis task.

6.4 State Management
Beyond conserving CPU cycles, Retina must also maintain con-
nection state without running out of memory. Here, we show that
Retina is able to handle long-term, stateful analysis of high-volume
production networks.
Setup. We subscribe to all TCP connection records on our cam-
pus network for 30 minutes using different connection inactivity
timeout schemes. We record the number of simultaneous connec-
tions tracked in memory as well as the overall memory usage every
second. To minimize temporal variations in the observed traffic rate,
we run each experiment back-to-back and use 16 cores to saturate
the ingress link.
Results. In Figure 8, we show that by using Retina’s default time-
out mechanism to early expire non-established connections, we
can fulfill the same subscription using 6.4 times less memory at
steady-state and tracking 7.7 times fewer concurrent connections
than using a fixed 5 minute inactivity timeout. With no timeouts,
Retina runs for just over 11 minutes before running out of memory.
This improvement comes from the observation that the majority
of new connections on a large, modern network consist of a single
unanswered SYN, which can be quickly delivered to the user to
minimize the number of concurrent connections in memory.

7 VERSATILITY
In this section, we evaluate Retina’s ability to easily answer complex
questions about large-scale network traffic. This includes investigat-
ing cryptographic anomalies, IP anonymization, extracting traffic
features for model inference, traffic profiling, flow export and anal-
ysis, and more. We show that Retina provides a flexible way for
operators and researchers to run investigations like these in just a
few lines of code, drastically lowering the bar to perform sophisti-
cated studies in a timely manner. In this section, we explore three
of these applications in detail as case studies.

7.1 Cryptographic Anomalies
Cryptographic protocols like TLS and SSH are notoriously difficult
to implement and deploy correctly. Many vulnerabilities, such as the

Logjam [1] and DROWN [4] attacks, have been found through large-
scale empirical measurement studies. However, most empirical
research has focused on server-side weaknesses since they can be
surveyed through Internet-wide scanning [28, 31, 75]. Studies about
client behaviors have been relegated to manually investigating a
small number of popular applications [12] or relying on heavily
sampled traffic [30, 51]. Unfortunately, these techniques miss the
long-tail of client configurations in less popular applications, which
are more likely to contain vulnerabilities.

Retina enables large-scale empirical investigations through its
ability to extract parsed protocol data from high speed network
traffic without sampling. To illustrate this, we investigate the distri-
bution of random nonces chosen by TLS client implementations. A
fundamental assumption behind cryptographic nonces is that the
likelihood of observing repeat values should be exceptionally low;
however, this assumption is difficult to verify empirically without
the ability to analyze large quantities of handshakes. Using just
40 lines of Rust code, we developed an application to measure the
frequency of distinct client randoms observed on our network. We
ran the experiment with 16 cores for 10 minutes with an average
ingress rate of 157.4 Gbps with zero loss.

During this time, we observed 13.4M TLS handshakes. Inter-
estingly, the value 738b712a...dee0dbe1 appears the most fre-
quently, with 8,340 occurrences in just 10 minutes of monitoring.
417a7572...00000000 and 0 are the second and third most com-
mon nonces with 493 and 309 instances, respectively, likely indicat-
ing issues with device entropy or incorrect TLS implementations.

7.2 Anonymized Packet Analysis
Raw network packets are leveraged for many traffic analysis tasks,
including device and application identification [11, 81], malicious
traffic classification [53] and intrusion detection [88]. While such
tasks require a substantial amount of data for training and testing, a
lack of shareable packet traces remains as one of the most apparent
obstacles to achieve realistic progress. Many researchers use labora-
tory setups to mimic real-world environments [81], or decades-old
public traces [88]. Both types of datasets do not represent up-to-
date, realistic network traffic and thus can bias evaluation results.
Researchers have also spent considerable effort manually filtering
raw traces to extract packets relevant to their analysis [11].

To accommodate privacy concerns, researchers and operators
can use Retina to anonymize packets’ IP addresses and develop
arbitrary analysis functions on filtered packets in a realistic and
timely manner. We implemented a sample application where we
encrypt the source and destination IP addresses of all HTTP packets
while preserving subnet structures. Due to Retina’s seamless third-
party library integration, we were able to write the application
in just 11 lines of code by calling functions from a public Rust
crate [3] that implements format-preserving IP encryption. We
ran the application with 16 cores for 10 minutes at an average
processing throughput of 164.7 Gbps with zero packet loss.

7.3 Feature Extraction for Model Inference
The ability to perform large-scale passive analysis provides the
means to easily extract diverse traffic features for a variety of oper-
ational use cases. One such use case is inferring streaming video
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Figure 9: CDF of byte counts up/down for video sessions from Net-
flix and YouTube—Retina easily enables traffic feature extraction while
filtering on application-layer data in real time.

quality, an increasingly important application for Internet Service
Providers (ISPs) seeking to accurately measure customer experience.
Researchers have attempted to develop methods to infer the quality
of specific video services, but face challenges isolating video traf-
fic and collecting the features needed to perform model inference.
Previous work has required embedding traffic collection systems
in volunteers’ homes, which presents deployment and data storage
challenges [17], or emulating network conditions in a laboratory
testbed, which has disadvantages compared to analyzing real-world
traffic [60]. Here, we demonstrate Retina’s ability to isolate traffic
and extract network features for model inference.

We developed a Retina application that subscribes to TCP connec-
tions on the network, filtered by the targeted video streaming ser-
vice. To isolate HTTPS traffic sent fromNetflix and YouTube servers,
we filter on TCP port 443 and the server name (SNI) field for domains
that carry video traffic: tls.sni ~ '(.+?\.)?nflxvideo\.net' for
Netflix and tls.sni ~ 'googlevideo' for YouTube. In around 100
lines of Rust code, we implemented a subscription callback that
aggregates network flows within video sessions to extract and log
several features used by Bronzino et al. [17] to infer video quality
metrics, including the number of parallel flows, total bytes up/down,
average number of out-of-order packets up/down, and total down-
load throughput. As a proof-of-concept, we collected data for both
Netflix and YouTube traffic using 16 cores for one hour, averaging
152.8 Gbps of aggregate input across both runs with zero loss. We
show the distribution of total bytes upstream and downstream for
video sessions in Figure 9.

8 RELATEDWORK
There is a significant body of prior work focused on processing and
analyzing high-speed network traffic. In this section, we discuss
related work and work that inspired aspects of Retina’s design.

Network Analysis Tools. Several passive analysis frameworks
have been developed in both academia and industry. Most similar
is Zeek [68], an open-source network monitor commonly used in
research studies and for intrusion detection [22, 30, 82, 83]. While
Zeek can answer similar questions as Retina, it is natively single-
threaded, requiring large cluster architectures to accommodate
modern network speeds [76]. Snort [73] is another popular IDS that
provides similar support for stream reassembly and application-
layer parsing, but lacks the ability to run generic analyses and is
estimated to require hundreds of cores to reach 100Gbps, even with

perfect scaling [100]. Retina supports 100GbE links on a single
server and outperforms I/O optimized versions of these related
systems for a given analysis task (Section 6.2). We note that Retina
is uniquely designed to not have to inspect every packet, flow, or
connection (which is necessary for intrusion detection), and instead
optimizes the processing pipeline for specific analysis questions by
discarding extraneous traffic as early and as often as possible.

Several commercial solutions marketed for 100Gbps visibility
exist (e.g., [2, 20, 62, 98]). While some commercial products offer ca-
pabilities like intrusion prevention, graphical interfaces, and packet
storage and indexing that go beyond Retina’s target use cases, few
support the same programmability that enables users to write ar-
bitrary analysis code on data types ranging from raw packets to
application-layer handshakes. Moreover, commercial products of-
ten require specialized hardware such as proprietary sensor nodes,
whereas Retina supports 100Gbps traffic analysis on commodity
hardware.

Prior systems have exposed callback interfaces similar to Retina’s
subscription programming model [55, 96]. mOS [55] provides fine-
grained control over TCP flow events for middlebox programming,
but does not provide application-layer abstractions. Retina differs
by hiding the complexities of application-layer parsing and filtering,
enabling users to easily analyze high-level network data without
needing to handle low-level protocol events. MiddleClick [9] also
focuses on middlebox programming. While it is not suited for pas-
sive analysis, it has a more limited but similar ability to express
offset/mask-based packet filters that will be partially offloaded.
However, it requires a complex network-oriented graph-based con-
figuration, and lacks the ability to process those filters at compile-
time. dShark [96] uses a domain-specific language for analyzing
different types of packet aggregations. However, dShark focuses on
distributed trace analysis for diagnosing network failures and does
not support analyzing connections or application-layer messages.
Packet-o-matic [59] is another event-based network sniffer that pro-
vides access to packets, connections, and application-layer sessions,
but does not scale to meet our 100Gbps performance objectives and
does not support any filtering. Perna et al. [69] recently released an
identically named command-line tool that extracts statistics from
RTP network traffic. However, it performs only offline analysis of
RTP-based traffic and is not compatible with high-speed links.

Many previous works have improved real-time packet process-
ing performance using kernel bypass [6, 8, 34, 94, 99] and hardware
offloads [7, 46, 70]. These systems are packet-oriented and lack the
expressiveness required for complex analyses. Some frameworks
aim for a middle-ground between performance and expressiveness
by using a domain-specific query language [13, 45, 63, 97], but are
still limited in their ability to express arbitrary analysis tasks. For
example, Sonata does not support queries that require reassembling
byte-streams [45]. Retina allows users to write arbitrary analysis
code on data at multiple layers of the networking stack, while trans-
parently discarding out-of-scope traffic to accommodate 100+GbE
network environments.

Filtering. Berkeley Packet Filter (BPF) [61] is the de facto filtering
mechanism used by most network monitoring tools [36, 44, 68, 73,
91]. However, BPF does not support application-layer predicates
and cannot be extended to support arbitrary protocols or complex
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semantics like regular expression matching. eBPF programs can be
used to perform more advanced filtering, but require tedious and
error-prone manual implementation. Retina supports user-friendly
semantics for both packet headers and application-layer data, and
it statically verifies all filters using the Rust compiler.

The Camus subscription language [56] is similar in syntax to
Retina filters, but focuses on compiling filter expressions to pro-
grammable switches for packet forwarding rather than traffic analy-
sis. Camus supports arbitrary packet formats, but does not support
filtering on application-layer fields due to hardware constraints.
These filtering engines served as inspiration for Retina’s filter lan-
guage, and we build upon them to encompass more complex se-
mantics and real-time application-layer filters.

9 CONCLUSION
In this paper, we introduced Retina, an expressive network analysis
framework capable of asking questions of high-speed traffic. Retina
introduces a subscription programming model with a user-friendly
filter language to help researchers and operators understand large-
scale networks without spending significant effort optimizing low-
level data collection mechanics. We explored several applications
written using Retina and showed that it can easily answer questions
on 100+Gbps links for a diverse set of use cases, closing the gap
between performance and expressiveness that has eluded prior so-
lutions. Looking forward, we believe that further optimizations to
filtering, such as including a P4-capable device in the filtering layers
or using the results of inference algorithms to filter on metadata,
are possible. We also leave support for different callback execution
models to future work. Retina is readily deployable on commodity
hardware, and is openly available to the community.
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A MODULE EXTENSIBILITY
Retina’s filter language and subscription data model are extensible.
Developers can add new protocols to filter on by adding a protocol
module to the framework, as well as new subscribable data types
by implementing a subscription module. This also encourages code
reuse, as well-defined protocol parsers and subscription types can
be integrated into the framework core and made publicly available
for the community.

A.1 Protocol Modules
Protocol modules define how individual packets and reordered
streams should be parsed. All protocols must implement either the
PacketParsable trait or the ConnParsable trait, which define the
minimum set of methods required for Retina to parse input traf-
fic. PacketParsable protocols are those that apply to individual
packets (e.g., IPv4, TCP) and must define methods for how to parse
itself from an encapsulating packet header, as well as provide the
header length and offset to the next header. ConnParsable proto-
cols are those that can be parsed from a connection byte-stream

1 trait PacketParsable<'a> {
2 /// Reference to the underlying Mbuf.
3 fn mbuf(&self) -> &Mbuf;
4 /// Offset from beginning of header to start of payload.
5 fn header_len(&self) -> usize;
6 /// Next level IANA protocol number.
7 fn next_header(&self) -> Option<usize>;
8 /// Offset from beginning of mbuf to start of payload.
9 fn next_header_offset(&self) -> usize;
10 /// Parse Self from the encapsulating packet's payload.
11 fn parse_from(
12 outer: &'a impl PacketParsable<'a>
13 ) -> Result<Self>
14 where Self: Sized;
15 }
16
17 trait ConnParsable {
18 /// Probe the L4 protocol data unit for the protocol.
19 fn probe(&self, pdu: &L4Pdu) -> ProbeResult;
20 /// Parse the L4 protocol data unit as the protocol.
21 fn parse(&mut self, pdu: &L4Pdu) -> ParseResult;
22 /// Removes session with ID `session_id`.
23 fn remove_session(
24 &mut self, session_id: usize
25 ) -> Option<Session>;
26 /// Removes all pending sessions in the connection.
27 fn drain_sessions(&mut self) -> Vec<Session>;
28 /// Default state of the connection on a matched filter.
29 fn session_match_state(&self) -> ConnState;
30 /// Default state of the connection on a non-matched filter.
31 fn session_nomatch_state(&self) -> ConnState;
32 }

Figure 10: Protocol Module Trait Methods—Packet-level protocols
(e.g., IPv4, IPv6, TCP, UDP) must implement the PacketParsable trait,
while connection-level protocols (e.g., TLS, HTTP, SSH) implement the
ConnParsable trait. These traits define how Retina parses incoming pack-
ets and byte-streams, allowing easy protocol extensibility.

(e.g., TLS, HTTP), and define methods to identify protocol mes-
sages and manage application-layer state. Figure 10 shows the trait
prototypes.

A.2 Subscription Modules
Subscription modules define how data is reconstructed before in-
voking the callback. Each subscribable type must implement the
Subscribable trait, which defines the abstraction-level (packet,
connection, or session), any application-layer parsers required for
processing (used to populate the Protocol Registry, Figure 2), and
the initial packet processing behavior. The Subscribable trait has
an associated Trackable type, which defines the processing behav-
ior for a tracked connection before and after a full filter match (e.g.,
buffer packets, immediately execute the callback, etc.). A Trackable
type is associated with every active connection, allowing Retina
to lazily reconstruct network data as the connection transitions
through each connection state. We show the Subscribable and
Trackable trait prototypes in Figure 11.

B FILTER CODE COMPILATION
Retina statically generates inlined code for each filter function to
enable fast runtime filter execution in each stage of the processing
pipeline. In this microbenchmark, we compare the performance ben-
efits of natively compiled filter code to runtime interpreted filters.
For an accurate comparison, we run Retina in offline mode, which
ingests a pcap instead of packets from the network interface. We
use publicly available Stratosphere [77] traces andmeasure the CPU
time to process the trace on a single core with no hardware filtering.
We log TLS handshakes with filters of differing complexities on
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1 trait Subscribable {
2 type Tracked: Trackable<Subscribed = Self>;
3
4 /// Subscription level (Packet, Connection, or Session).
5 fn level() -> Level;
6 /// List of associated application-layer protocol parsers.
7 fn parsers() -> Vec<ConnParser>;
8 /// Process a single incoming packet.
9 fn process_packet(
10 mbuf: Mbuf,
11 subscription: &Subscription<Self>,
12 conn_tracker: &mut ConnTracker<Self::Tracked>,
13 ) where Self: Sized;
14 }
15
16 trait Trackable {
17 type Subscribed: Subscribable<Tracked = Self>;
18
19 /// Instantiate a trackable entity for the connection.
20 fn new(five_tuple: FiveTuple) -> Self;
21 /// Update subscription data prior to a full filter match.
22 fn pre_match(
23 &mut self,
24 pdu: L4Pdu,
25 session_id: Option<usize>
26 );
27 /// Update subscription data on a full filter match.
28 fn on_match(
29 &mut self,
30 session: Session,
31 subscription: &Subscription<Self::Subscribed>
32 );
33 /// Update subscription data after a full filter match.
34 fn post_match(
35 &mut self,
36 pdu: L4Pdu,
37 subscription: &Subscription<Self::Subscribed>
38 );
39 /// Update subscription data on connection termination.
40 fn on_terminate(
41 &mut self,
42 subscription: &Subscription<Self::Subscribed>
43 );
44 }

Figure 11: Subscription Module Trait Methods—Subscription data
types must implement the Subscribable and Trackable traits, which de-
termine Retina’s processing behavior for that type.

the following Stratosphere traces: CTU-Normal-7, CTU-Normal-12,
CTU-Normal-20, and CTU-Normal-30.

In Figure 12, we show the runtime improvement from using na-
tive code generation over dynamically interpreted filters. Statically
generated filter code produces a 5.4%–300.4% speedup, depending
on traffic and filter complexity. Unsurprisingly, compiled filters are
consistently faster than interpreted filters, but the benefits are less
pronounced for basic filters (e.g., ipv4). However, for more com-
plex filters, such as one3 used by Bronzino et al. [16] and adapted
to Retina’s filter language, natively generated code can result in
more than 3× higher processing throughputs. We note that filter
code generation incurs a negligible increase in compilation time,
but would necessitate recompilation for different filter expressions.
On our platform, an incremental build with link time optimization
takes 73 seconds on average. However, we argue that the runtime
performance and memory safety benefits provided by the Rust
compiler outweighs this cost.

3ipv4.addr in 23.246.0.0/18 or ipv4.addr in 37.77.184.0/21 or ipv4.addr in 45.57.0.0/17
or ipv4.addr in 64.120.128.0/17 or ipv4.addr in 66.197.128.0/17 or ipv4.addr in
108.175.32.0/20 or ipv4.addr in 185.2.220.0/22 or ipv4.addr in 185.9.188.0/22 or
ipv4.addr in 192.173.64.0/18 or ipv4.addr in 198.38.96.0/19 or ipv4.addr in 198.45.48.0/20
or ipv4.addr in 208.75.79.0/24 or ipv6.addr in 2620:10c:7000::/44 or ipv6.addr in
2a00:86c0::/32 or tls.sni ~ 'netflix.com'or tls.sni ~ 'nflxvideo.net'or tls.sni ~ 'nflximg.net'or
tls.sni ~ 'nflxext.com'or tls.sni ~ 'nflximg.com'or tls.sni ~ 'nflxso.net'
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Figure 12: Speedup from Compiled Filter Code—Native code genera-
tion can result in 5.4%–300.4% speedups over runtime filter interpretation,
depending on filter complexity and the offered traffic. “Netflix traffic” refers
to a 32 predicate filter for known Netflix domains and IP prefixes used by
Bronzino et al. [16] to collect Netflix traffic features.

Characteristics Measure Value Unit

Packet size Avg 895 bytes
Fraction of TCP connections Avg 69.7 %
Fraction of TCP stream bytes Avg 72.4 %
Fraction of UDP connections Avg 29.8 %
Fraction of single SYN connections Avg 65 %
Maximum time between segments in flow P99 163 sec.
Time to SYN/ACK P99 1 sec.
Fraction of incomplete flows Avg 4.6 %
Fraction of out-of-order flows Avg 6 %
Number of packets per connection Avg 121 pkts
Number of packets to fill a
sequence number hole P50 1 pkts
Maximum number of packets to fill a
sequence number hole in a flow P99 471 pkts

Table 2: Campus traffic statistics.
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Figure 13: Distribution of packet sizes.

C NETWORK CHARACTERISTICS
At the time of this writing, ingress traffic rates on our university
network (aggregated across both links in our monitoring setup) fluc-
tuated between a maximum of approximately 170Gbps and a mini-
mum of approximately 35Gbps. Table 2 shows a summary of several
traffic characteristics in a 10 minute measurement window on our
network. Figure 13 visualizes the distribution of packet sizes on the
network. We note that this data is collected through measurement
applications developed using Retina itself (with appropriate config-
urations where necessary, such as turning off inactivity timeouts).
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